STATISTICAL

Z>»=0Z=
s LT
M CA=mn Z~

INDIAN STATISTICAL INSTITUTE, KOLKATA

R. C. BOSE CENTRE FOR CRYPTOLOGY AND SECURITY

COMPUTER SECURITY AND INDUSTRIAL CRYPTOGRAPHY

Master’s Thesis Report
by Tamas Kanti Garai (CrS2116)

SCA Resistant Implementation of Post-
Quantum Scheme: CRYSTALS - Kyber

Advisors: Prof. Dr. Ingrid Verbauwhede & Prof. Dr. Bimal Kumar Roy
Daily Supervisors: Suparna Kundu, Angshuman Karmakar & John Gaspoz

July, 2023

Acknowledgements

I wish to express my sincerest gratitude to Prof. Ingrid Verbauwhede and
Prof. Bimal Kumar Roy to give me an opportunity to work in this thesis
and also to my daily supervisors Suparna Kundu, Angshuman Karmakar and
John Gaspoz for their continuous guidance and mentorship that they pro-
vided me during the project. They showed me the path to achieve my targets
by explaining all the tasks to be done and explained to me the importance
of this project. They were always ready to help me and clear my doubts
regarding any hurdles in this project. Without their constant support and
motivation, this project would not have been successful.

Place: KU Leuven, Belgium Tamas Kanti Garai
Date: 04.07.2023

Declaration

I hereby declare that the project entitled “SCA Resistant Implementation
of Post-Quantum Scheme: CRYSTALS - Kyber” submitted in partial fulfill-
ment for the award of the degree of Master of Technology in Cryptology and
Security completed under the supervision of Prof. Dr. Ingrid Verbauwhede
and Prof. Dr. Bimal Kumar Roy, at ISI Kolkata is an authentic work. Fur-
ther, I declare that I have not submitted this work for the award of any other
degree elsewhere.

Place: KU Leuven, Belgium Tamas Kanti Garai
Date: 04.07.2023

Abstract

Masking and shuffling are two well-known countermeasures against Side-
Channel Attacks (SCA) on cryptographic schemes. But masking causes huge
performance and resource overhead. Whereas Shuffling is less expensive yet
an effective countermeasure. It uses a random permutation to effectively
scramble the order of operations inside a loop. In the year 2022, National
Institute of Standards and Technology (NIST) has selected CRYSTALS-
Kyber as a new standardized post-quantum public-key encryption and key-
encapsulation scheme. In the meantime some studies have already been done
on Kyber’s side-channel security. Some papers have been published on first-
and higher-order masking [10, 4] on Kyber. But, no proper study on im-
plementing shuffling on Kyber has been done yet. But recently an attack
by Backlund et al. in [2] has been done on combined masked-shuffled im-
plementation of Kyber. They have designed the attack on self-implemented
shuffling on Kyber, taking the already published first-order masked imple-
mentation of Kyber in mkm4 project [10] as a baseline. In this paper, we
have implemented shuffling on a specific variant of Kyber (KYBER768) from
the pqm4 project [12], for an ARM Cortex-M4 microcontroller. Our shuf-
fled implementation, taking 873,757 CPU cycles, features a 1.1x overhead
factor over the implementation in the pqm4 project. We have checked the
leakage evaluation of our shuffled implementation component-wise. Then we
combined our shuffled implementation with the first-order masked version of
KYBERT768 presented in mkm4 project [10]. Our combined masked-shuffled
implementation, taking 3,081,293 CPU cycles, features a 3.86x overhead
factor over the implementation of KYBER768 in the pqm4 project.

1

Table of Contents

Acknowledgements i
Declarationo i
Abstract ii
1 INTRODUCTION 1
1.1 Motivation 2
1.2 Our Contribution 2
1.3 Thesis Outline 3
2 PRELIMINARIES 4
2.1 KyvYBER Key Encapsulation Mechanism 4
2.2 Masking 7
2.3 Shuffling 8
2.4 Shuffling on NTT 8
2.5 Some Attacks on Kyber 10
3 IMPLEMENTATION 15
3.1 Permutation Generation 15
3.2 Kyber Decryption. 16
3.3 Kyber Re-encryption & Compare 18
3.4 NTT & Inverse NTT 21
4 MEASUREMENT 23
4.1 Performance 23
4.2 Leakage Evaluation 24
5 CONCLUSION 33
References 34

1ii

Chapter 1

INTRODUCTION

In recent years, seeing the uninterrupted advancement in the construction of
quantum computer, scientists and researchers have realized the importance of
post-quantum cryptography. Due to Shor’s polynomial-time [26] algorithm
for solving prime factorization problem and discrete logarithm problem, cur-
rently employed public key schemes like RSA [24] and elliptic curve Diffie-
Hellman schemes [7] are no more a safe option against large-scale quantum
computers. Consequently, in the year 2016, the National Institute of Stan-
dard and Technology (NIST) [27] has initiated a process to develop and
standardize one or more public-key algorithms that are quantum-resistant.

In the selection process of NIST [21], CRYSTALS - Kyber [3] is selected
as a standard post-quantum public-key encryption and key-establishment
algorithm in the year 2022. The security of Kyber is based on ring-learning
with error (RLWE), which is reduced to the shortest vector problem (SVP)
and a-SVP of the lattice. Since no polynomial-time algorithm to solve the
SVP has been evolved till date, it is believed that the public key cryptography
based on this hard problem will be resistant to quantum computers also.

In the year 1995, Kocher introduced in [14], a new kind of attack on the
implementations of Diffie-Hellman, RSA, DSS, and other Systems. This at-
tack was named as timing attack since it is done by carefully measuring the
time required for each operation related to the secret keys of those schemes.
Nowadays every cryptographic protocol is implemented in constant-time to
prevent this type of attacks. Again in 1999. Kocher et al. have introduced
in [15] another attack that also does not target the mathematical security
directly like timing attack. This attack was named as power analysis attack
as this attack recovers secret keys by analyzing the power consumption of

Chapter 1 | INTRODUCTION

the target device. To prevent this specific attack, only constant-time imple-
mentation of cryptographic schemes is not enough.

Due to these kinds of already published successful attacks, nowadays se-
cure implementation of post-quantum schemes is as important as mathemat-
ical security of the schemes. So after standardizing post-quantum schemes,
the remaining task for the researchers is to make the standardized quantum
schemes side-channel attack (SCA) resistant.

One very famous provably-secure countermeasure against these kinds of
SCA is masking [6]. But masked implementations of quantum schemes have
huge overhead in run-time. There are already some published works on
the masked implementation of KYBER. In [10], first-order masked kyber
on ARM cortex-M4 has been implemented. But first-order masking cannot
resist higher-order side-channel leakages and higher-order masking increases
the complexity of a scheme exponentially.

Shuffling is another countermeasure against SCA, which is not as ex-
pensive as masking. One idea is to combine masking with shuffling in the
implementation of KYBER instead of using higher-order masking in the im-
plementation.

1.1 Motivation

Although there are already some published papers on the masked imple-
mentation of KYBER, both first-order [10] and higher-order [4]; there is no
published work on the shuffling of KYBER. Some attacks (e.g., [2]) has also
been published on combined masked-shuffled implementation of KYBER with
self-implemented shuffling. There should be some study on the shuffled im-
plementation of KYBER. In this thesis, we have tried to do that. Combining
shuffling with the masked implementation of KYBER can give some improve-
ment in security against SCA with very less overhead in run-time. We tried
that aspect also in this work.

1.2 Our Contribution

This work is focusing on implementing shuffling on KYBER and testing the
effect of shuffling on the run-time and security of the scheme. During this
short period of six months, we have done two things:

Chapter 1 | INTRODUCTION

o At first we have implemented shuffling on the Kyber768, taking the
implementation of the pqm4 [12] project as baseline. We checked the
overhead and improvement in the security of our shuffled implementa-
tion compared to the plain implementation.

e Then we have combined our shuffling implementation on the mkm4
[10] project and checked the overhead in run-time of this combined
implementation.

1.3 Thesis Outline

The topics of each chapter in this thesis are briefly described below:

o Chapter 2 : The second chapter consists of the prerequisites of this
thesis. Here we have briefly described the scheme KYBER, the idea
behind masking and shuffling. Later some published attacks on KYBER
are also mentioned in this section.

o Chapter 3 : In the third chapter we have explained how we imple-
mented shuffling countermeasures explained in chapter 2 in different
components of KYBER.

o Chapter 4 : This chapter consist of the measurements of run-time of
different components of plain, shuffled and combined masked-shuffled
implementation of KYBER and their comparisons. We also present
detailed evaluation of the improvement in leakages in the modified
implementation in this chapter.

Chapter 2

PRELIMINARIES

2.1 Kyber Key Encapsulation Mechanism

For later reference the public key encryption scheme for KYBER:
KyYBER.CPA = (KYBER.CPA.GEN, KYBER.CPA.ENC, KYBER.CPA.DEC)

in Algorithm 1, 2 and 3 are provided respectively, where the function defini-
tions are as follows:

COMPRESS, (z,d) = [(2?/q).x)mod(2%)

DECOMPRESS, (z,d) = [(q/2%).7]

Xn,, be the distribution of polynomials of degree n with entries independently
sampled from the centered binomial distribution x, with support {—n,...,n}.

Let k,d;,d,,d, be positive interger parameters, n = 256. Let M =
{0,1}*°% denote the massage space, where every maessage m € M can be
viewed as a polynomial in R, = Z,[X]/(X™ + 1) with coefficients in {0, 1}.
Here ciphertext are of the form (u,v) € {0, 1}56+d x {0,1}?56-% Parameter
sets for different variants of KYBER is mentioned in table 2.1.

To obtain a CCA2-secure KEM from the CPA-secure building blocks,
KYBER uses a tweaked version of the Fujisaki-Okamoto transform [11]. The
algorithms of the KYBER KEM are provided in algorithm 4, 5 and 6.

Chapter 2 | PRELIMINARIES

Algorithm 1 KYBER.CPA.GEN][10]

(p,0) & {0,136 x {0,1}2%;

return pkcpy = (E,p), skcpa =8

Algorithm 2 KyBER.CPA.ENC[10]

Input: pkepa = (8,p),m € M,r & 0,1}

1:

A & U,

(I‘, €1, 92) - Xﬁ,m X Xﬁ,nz X Xn,mas
i« NTT(r);

u< INTT(Aof) + eq;

v« INTT(tof) +ex + [1].m;
c1 < COMPRESS,(u, d,);

c2 < COMPRESS, (v, d,);

return c := (c¢q, ¢o)

Algorithm 3 KyYBER.CPA.DEC[10)]

Input: skcpa =8,¢= (u,v)

1:
2:
3:

u < DECOMPRESS,(u, d,,);
v < DECOMPRESS,(V, d,);
return m = COMPRESS,(v — INTT(8 o NTT(u)), 1)

Algorithm 4 KYBER.CCAKEM.GEN][10]

2 & (0,17
(pk, sk’) = KYBER.CPA.GEN();
sk = (sk'||pk|| H (pk)||2);
return pk, sk

Chapter 2 | PRELIMINARIES

Algorithm 5 KyBER.CCAKEM.ENCAPS[10]

Input: pk

1

2
3
4:
5
6

M & {0, 1},
:]\4_(— H(m),
- (K, r) := G(ml||H(pk));

. K= KDF(K||H(c));
: return ¢, k

¢ .= KYBER.CPA.ENC(pk, m, r);

Algorithm 6 KyBER.CCAKEM.DECAPS|[10]

Input: c, sk

1:

[t
=

(K',1) == G(m/| | H(pk));

if c = ¢ then

K = KDF(K'||H(c);
else

K := KDF(z||H(c));
end if

return K

¢ := KYBER.CPA.ENC(pk, m’,1");

Extract (sk’||pk||H (pk)||z) from sk;
m’ =:= KYBER.CPA.DEC(sk/, ¢);

KYBER variant n k| q m | ne| (dy,dy) | 6

KYBER512 956 |2 33203 |2 | (10,4) | 2™
KYBER768 256 |3 133292 |2 |(10,4) |27t
KyYBER1024 256 |4 133292 |2 | (11,5) |27'™

Table 2.1: Parameter sets for different variants of KYBER [1]

Chapter 2 | PRELIMINARIES

2.2 Masking

In masking countermeasure we split every sensitive variable M into d + 1
shares My, My, ..., My randomly so that M = My x M * ... * My, where %
is a group operation. My, Ms, ..., My, called the masks, are usually chosen
randomly and My, called the masked variable[16], is processed in such a way
that the relation mentioned is satisfied. The parameter d is called the masking
order. A d order masked implementation can withstand an DPA exploiting
upto d leakage signals simultaneously. Although attacks exploiting more
than d leakages are always possible theoretically, but practically complexity
of those attacks grows exponentially with d.

There are two kinds of masking: Boolean masking, that uses XOR-
operation to add up the shares to get the original variable and arithmetic
masking, that uses modular arithmetic addition to add up the shares to get
the original variable.

Easy to find a Leact Hard to find a
L!:/\Kl\(i!:sgss SSSS
Input(a,)) Output(b,)
Input(a) Operation Output(b) Operation
Input(a,) Output(b,)
a;Pa=a by ®b,=0b

Unmasked Computation

Masked Computation

Figure 2.1: Masked vs Unmasked Computation

In masked implementation, as shown in figure 2.1, due to the randomness
of the masks and execution all the computations inside an algorithm sepa-
rately on each of the masks, it is hard for an adversary to find the value of
the sensitive variable, from the side-channel leakage. But when the masking
order is higher, there is too much overhead in the implementation due to the
repetition of same computation in each of the masks. For that reason shuf-
fling together with first order masking is preferable in the implementation.

Chapter 2 | PRELIMINARIES

2.3 Shuffling

In shuffling, at first a random permutation is generated and later this permu-
tation is used to scramble up the order of computation. This can misguide the
attacker about the order of the operations, the correlation between time and
execution of a certain instruction. Applying shuffling is very straight forward
and it is usually significantly less expensive than higher-order masking.

In figure 2.2, suppose mg, my, ..., m7 is an array of output after the exe-
cution of some independent operation on each variable. In case of shuffling,
the sequence of outputting the array element after the execution of the in-
dependent operation is reordered. As a result if the permutation, which is
used to reorder the sequence of the output array, is kept secret then from
side channel leakage it is impossible to map the power trace peaks to specific
array element.

Figure 2.2: Shuffling the order of computation using a random permutation

2.4 ShufHling on NTT

Inside the Kyber algorithms, the NTT used are one of the easy target in the
recently published attacks. There are some shuffling countermeasures on the
NTT as well mentioed by Ravi et al. in [23].

Chapter 2 | PRELIMINARIES

2.4.1 Fine-Shuffled NTT

Each NTT layers contains a number of butterflies. Some Belief Propagation
based attack on the NTT has targeted the SCA leakage from the loading of
inputs of every butterfly. To directly counter that, fine shuffling [23] simply
randomize the order of the input loads and output stores for each butterfly,
as shown in 2.3. As a result an attacker cannot assign the leakage value to a
specific input/output of a butterfly.

® o0 -
S k (Y i : S]) S i
oy oy oy for

X1,1 X1,0 @ X1,1 @ X1,0

Figure 2.3: Four possible fine shuffled butterflies

2.4.2 Coarse-Full-Shuffled NTT

It is known that butterflies within a layer of the NT'T can be computed
independent of the one another. Coarse full shuffling [23] uses this advantage
to permute the order of execution of the individual butterflies, as shown in
figure 2.4, within each layer. However, the pair of coefficient of a single
butterfly has to be processed together, so loads and stores of a single butterfly
are processed in a consecutive order. With n coefficients, this permutes (n/2)
individual butterflies, resulting an entropy of (n/2)!, which is beyond realistic
brute-force for typical parameter sets.

2.4.3 Coarse-In-Group-Shuffled NTT

In a single layer, butterflies with the same twiddle factor are referred to as
group. Instead of performing a full layer shuffling for every stage, coarse-in-
group shuffling [23] randomizes the order of computation of the butterflies
within a group. For a layer with m butterfly groups, this results in ((5%)")™
permutations. For example, in the INTT of Kyber, with n = 256, the first
layer consists of i = 64 groups, the entropy is ((5%)!)™ = 2°4. For the last
layer, this reduces to a single group, increasing the entropy to 128!. Figure

2.5 shows a coarse-in-group-shuffled sub-graph.

Chapter 2 | PRELIMINARIES

%04 X1

x fS'U fC1

ot _Ubpl- % S
_,,»—"""/ \-\"“'_l C /,./'"/’ ‘-\l\'\-‘ /,/-"'/-)‘:xam\"‘» - ,.-""/7/- -“‘\1“"\,.,

for @ o6’ f;f}’ . e

X0,4 X1,4 X0,5 X1,5
s fh . ms Ga)l fp
G ,__:;Lfb? "lﬁﬁ;__ @ f,ff fff\';__‘ Cxy
X0,7 X1,7 X0,3 | X1,3

Figure 2.4: Example of coarse full shuffling

2.5 Some Attacks on Kyber

2.5.1 Neural Network Based Attacks

In the paper [18], Ngo et al. has attacked a masked implementation of Saber,
which is a post quantum scheme very much similar to Kyber. They have
attacked the decapsulation device to recover the long-term secret key as well
as the session key. Later in [17] and [2] the attacks has been improved and
generalized so that it can be done on masked and shuffled Kyber also.

In [17], they have attacked on the Decoder of the decapsulation device.
During decapsulation of both Saber and Kyber, a given ciphertext is de-
crypted at first and then it is re-encrypted and checked if the newly gener-
ated ciphertext matches with the original ciphertext or not. If the two match,
then the decrypted message is used to generate the common key otherwise
a randomly sampled element is used to generate the key. In the decryption
part, just before the message is output, a decoder is used to give the message
bit as output in a packed fashion. This decoder processes the message array

10

Chapter 2 | PRELIMINARIES

X1

X0,1 ,
o Il o @ 5 @
B @ w il

X0,4 X1,4 X0,4 x 1,4
X0,5 fi bc; __*15 Xos f bg_‘; s
T R e
Xo,7 | X1,7 Xo,7 | X1,7

Figure 2.5: Example of coarse-in-group shuffling

in a bit by bit fashion. As a result the power consumption of the decapsu-
lation device during the execution of this decoder leaks a lot of information
about the message bits.

In the above mentioned attack, a neural network has been trained with
millions of power traces of one bit processing by the decoder. After the
training the neural network can distinguish between the message bit 0 and
1 just by looking at the power trace of that bit’s processing by the decoder.
This way the whole message can be recovered. Masking has no effect in this
attack since in case of masking the decoder function processes the masked
share of each message bit together, so power trace corresponding to all the
shares corresponding to a single message bit is used for the training of neural
network.

Once the message corresponding to a certain number of chosen ciphertexts
is recovered, from the relation between the message, ciphertext and key, the
key is recovered. The same attack works for the shuffled case also. By taking
the Hamming weight of messages corresponding to chosen ciphertexts and
using bit flip technique, one can recover the messages in the shuffled case

11

Chapter 2 | PRELIMINARIES

jmmmmmmmmm . z—30
| & CPAPKE | _ KDF [ss
: ‘L Decryption ||| H(pk) K—3 1
| ' J
| X | ‘| CPAPKE | c'| »
ion 3 Decode P G H =?
o I Decryption Decode : Encryption H
I
— T
L ________________ | R T
pk
L Decryption |
Attack Point FO Transform

Figure 2.6: Attack point in the Decapsulation of Kyber (diagram taken from

[5])

also.

The attack process in the shuffled case is more complicated than the
unmasked and masked both the cases. So shuffling is clearly giving more
security in this case than plain masking.

2.5.2 Belief Propagation Based Attacks

In the implementation of Kyber KEM, for efficient polynomial multiplication
number theoretic transformation (NTT) is used and the input of these NTT
and inverse N'TT are sometimes related to sensitive variables like the long
term secret or the session keys. In [22], [20] and [9] these NTT/INTT has
been targeted. In all the attacks, belief propagation has been used to attack
the butterflies which are the building block of NTT/INTT.

The butterflies inside NTT/INTT are comprised of many potentially
leaking modular operations like modular addition multiplication etc. Power
traces during the execution of these operation is used for template matching.
At first factor graphs are designed for the belief propagation. The initial
distribution of the nodes of these factor graphs are obtained by template
matching from millions of templates of those butterflies with different set of
inputs. Once the template matching is done, some iteration of belief propaga-
tion is executed. After some iteration of the BP, the input to the NTT/INTT

12

Chapter 2 | PRELIMINARIES

can be obtained if the the coefficients of the input polynomials are chosen
from a set of small support or if the input polynomials are coarse.

~ W s x Am

Xo X0 ~
X1 X1 AN .

-1

X1 fsub X1 X1 X1
Single Butterfly
Factor Graph of a butterfly Factor Graph of a butterfly
Figure 2.7: Butterflies and Corresponding Factor Graphs used in many at-
tacks

For example, in figure 2.8, the input to the red marked NT'T is the poly-
nomial r, whose coefficients are chosen using centered binomial distribution.
As a result the coefficients of r are from a set of small support. So this attack
can be successfully done on this NTT. In [22], this NTT has been attacked.

In [20], an attack on the NTT inside the key generation of Kyber is
mentioned. The key generation contains an NTT whose input is the long-
term secret key (figure 2.9) which is polynomial whose coefficient are also
sampled from a centered binomial distribution. So similar attack can be
done on this also.

In line 2 of the decapsulation algorithm of Kyber shown in algorithm 6,
KYBER.CPA.DEC is called. There is an inverse NTT inside KYBER.CPA.DEC
whose input involves with the secret key and ciphertext. If the ciphertext
can be chosen in such a way that this input to the INTT become coarse then
this INTT can also be exploited by the similar BP based attack. In fact in
9], this approach is taken to extract the input to the mentioned INTT, and
from the input the secret key is recovered using some look up table and Brute
Force search on a small sample.

13

Chapter 2 | PRELIMINARIES

i oinal . N
(Memory I\O/II;sgsl:;e %:" Ciphertext éﬂ)
k.

pk m c=(cre)]

R N |
: Decode Decompression r NTT™ 1 Encode :
: { 7 W) :
I) 4 A4 Q Q |
| 2 ERER
I seed Binomial - =/-\ :/\ ERER
I Sampler il \/ \J g |& :
I LA

v s |=
' 1‘—coin & |la :
Trom AN =7 |

Rejection -1 u T

' > > |
1 | Sampler NTT k / Compression |
I |

Figure 2.8: Attack point in the Encryption of Kyber (diagram taken from
[19])

Key Generation

| Rejection | A

1

1

Ve I

- _ " 1

> Sampler » BRAM 'kj » Reduction :

1

o PRNG s 1 l |
o CORE S a Encoder . pk

Binomial :

S

Sampler | » Encoder = sk

1
|
| > BRAM
|
|

Figure 2.9: Attack point in the Key Generation of Kyber (diagram taken
from [19])

14

Chapter 3

IMPLEMENTATION

In this section, we will discuss the implementation of shuffling in different
components of the Kyber decapsulation algorithm. For the implementation,
we first need a permutation generator to generate a random permutation.
Also, the implementation of the permutation generator has to be constant
time so that we can do a t-test on the shuffled components. We will use
this permutation generator whenever we need a random permutation for
shuffling throughout the code. Inside the Kyber decapsulation algorithm,
there are two major parts where we apply shuffling, one is the CPA-secure
decryption part and the other is the merged-up CPA-secure re-encryption
and comparison of ciphertexts part.

3.1 Permutation Generation

The main building block of implementing shuffling is the permutation gen-
erator. Using the Fisher-Yates algorithm [13] (shown in algorithm 7) we can
generate a random permutation of finite sequences in linear time. Given a fi-
nite sequence S = {so, 1, ..., Sn_1}, the original algorithm iterates over every
element s; for i in {n — 1,n — 2,...;1} and swaps it with a random element
in the set S; = {s¢, s1,...,s;}. But sampling from {0, 1,...,4} will need an
approach with probabilistic run-time or a modulo operation together with
a random number generator. To generate the random number we used the
randombytes() function that is already defined in the KYBER code present
in the pqm4 library [12]. But the modulo operation cannot be avoided if we
do not change the Fisher-Yates algorithm a little bit. Instead of sampling

15

Chapter 3 | IMPLEMENTATION

from {0, ..., i} if we sample from {0, ...,n — 1} then the modulo operation can
be replaced by bit-wise AND operation whenever n is a power of 2. And in
shuffling the decapsulation of KYBER, we only need random permutation of
power of 2 sizes.

Algorithm 7 FISHERYATES|[13]
Input: size
Output: permutation[size], an array of random permutation of size size
1: for i in 0 to size — 1 do
2 permutationli] = i;
3: end for
4: for i from size — 1 down to 1 do
5: k < random integer, such that 0 < k < ;
6
7
8
9

temp = permutationli];
permutationli] = permutation[k];
permutation|k] = temp;
: end for
10: return permutation

Although this tweaked version of the Fisher-Yates shuffle (shown in al-
gorithm 8) will generate all possible permutations but with a slight bias. In
28], it is shown that the bias caused by the tweaked version of the Fisher-
Yates shuffle should not lead to a significant security reduction of the shuffling
countermeasure.

3.2 Kyber Decryption

3.2.1 Decoder

Inside the decryption algorithm of Kyber, just before the plaintext is gen-
erated, there is a decoder (shown in figure 3.1) that packs the 256 message
bits (each of them are coefficient of a polynomial) in a 32-byte array. This
decoder is a good attack point for many of the published attacks. So we ap-
ply shuffling here. Since the decoder packs the message bits in a sequential
manner, we shuffle the order of computation of each of the message bits using
the permutation generated by the implemented permutation generator.

16

Chapter 3 | IMPLEMENTATION

Algorithm 8 FISHERYATES__MODIFIED

Input: size
Output: permutation[size], an array of random permutation of size size
1: for i in 0 to size — 1 do
2 permutationli] = i;
3: end for
4: for i from size — 1 down to 1 do
5: k < random integer, such that 0 < k < size —1; > modified line
6 temp = permutation]i];
7 permutation[i] = permutation[k];
8 permutation|k] = temp;
9: end for
10: return permutation

Encod “ 0
R .ncode ot
| " CPAPKE | _ KDF ss
! \I, Decryption ||| H(pk) K—1
' !
! . X m’, r's] CPAPKE | ¢’y _
) i G K5 =
i Decryption . | l Encry ption H
|
|
L ________________ | 4 T
vk

= =t |
 _Decryption |

FO Transform

Figure 3.1: The decoder function inside the KYBER.CCAKEM.DECAPS

3.2.2 Subtraction of Two Polynomials

In the decryption algorithm of Kyber, there is a subtraction of two polynomi-
als involving secret key and ciphertext. As a result, this subtraction can be
a target to secret key recovery attacks. We have shuffled the order of point-
wise subtraction of polynomials using a random permutation generated from
the tweaked version of Fisher-Yates algorithm.

17

Chapter 3 | IMPLEMENTATION

Algorithm 9 poly_tomsg

Input: poly[256]
Output: msg[32], 32-byte message
1: for ¢ in 0 to 255 do
2 r=1/8;
3 y = 1%8;
4: y-th bit of msg[z] = COMPRESS,(polyli], 1);
5: end for
6: return msg

Algorithm 10 poly_tomsg_shuffled

Input: poly[256]

Output: msg[32], 32-byte message
1: permutation[256] = FISHERYATES__MODIFIED(256);
2: for z in 0 to 255 do

3: i = permutation|z];

4 r=1/8;

5: Y= i%8;

6 y-th bit of msg[z] = COMPRESS,(polyli], 1);
7: end for

8: return msg

Algorithm 11 poly_sub_shuffled

Input: polyl[256], poly2[256]

Output: poly3[256], after component-wise adding poly1[256] and poly2[256]
1: permutation[256] = FISHERYATES_ MODIFIED(256);
2: for 7 in 0 to 255 do
3: x = permutation[il;

4: poly3[z] = polyl|x] — poly2[z];

5

6

: end for
: return poly3

3.3 Kyber Re-encryption & Compare

3.3.1 Encoder

Inside the encryption of Kyber, before generating the ciphertext, the 32-byte
message has to be encoded into a polynomial with 256 coefficients. This

18

Chapter 3 | IMPLEMENTATION

_________________ z—30
: " CPAPKE | _ KDF [—>ss”
S 3

: l Decryption | K 1
| } I
| I m’y '] CPAPKE [’y _

B , G H= =?

C | Decryption Decode } Encryption H
| |
I
S | ¥ i
K pk

I Pocmmtion
L _Decryption |

FO Transform

Figure 3.2: The encoder function inside the KYBER.CPA.ENC

encoder function (shown in figure 3.2) can be an easy target to message
recovery attacks. So we reordered the generation of polynomial coefficients
from the input message using a random permutation. The implementation
of this part is exactly similar to the implementation of the decoder function
mentioned above.

Algorithm 12 poly_frommsg

Input: msg[32], 32-byte message
Output: poly[256]
1: for ¢ in 0 to 255 do
2 r=1/8;
3 y = i%8;
4: polyli] = DECOMPRESS, (y-th bit of msg[z],1);
5. end for
6: return poly

3.3.2 Addition of Two Polynomials

Inside the encryption algorithm of Kyber (in line 5 of algorithm 2), there is
an addition involved with the message. As a result, some information about
the message can be leaked during re-encryption. We implemented shuffling

19

Chapter 3 | IMPLEMENTATION

Algorithm 13 poly_frommsg shuffled

Input: msg[32], 32-byte message

Output: poly[256]
1: permutation[256] = FISHERYATES MODIFIED(256);
2: for z in 0 to 255 do

3: i = permutation|z];

4: Tr = i/8;

e y = 1%8,;

6: polyli] = DECOMPRESS,(y-th bit of msg[z], 1);
7: end for

8 return poly

to this component as well with a similar technique mentioned in subsection
3.2.2.

Algorithm 14 poly_add_shuffled

Input: polyl[256], poly2[256]

Output: poly3[256], after component-wise adding poly1[256] and poly2[256]
1: permutation[256] = FISHERYATES__MODIFIED(256);
2: for ¢ in 0 to 255 do
3: x = permutation[il;

4: poly3[x] = polyl|x] + poly2[z];

5

6

: end for
: return poly3

3.3.3 Compress Function

In the line 7 of KYBER.CPA.ENC algorithm, there is a compress function
(shown in figure 3.3), which is used on v. Since this v is directly related with
the input message, message recovery attacks can exploit this compression.
To make it resistant to message recovery attacks, we need to secure this
compress function. So we apply shuffling here also.

The compress function takes a 256-coefficient polynomial as input. The
function applies the COMPRESS, operation on each of the coefficients to make
every co-efficient a 4-bit integer. Then packs every 2 coefficient into a single
8-bit variable.

20

Chapter 3 | IMPLEMENTATION

N
Original ke
(Memory Message %l Ciphertext % J
3

r
Pk m c=(c,)

|

|
} " DDF-Based E de I
;| Decode Decompression INTT2 ncode
] 1 F Y -~ I
| 1 I
| L 4 L 4 Q Q |
1 22 3 (2!
I seed DDF-Based | I | Binomial - ‘:/"\ :/“\ b=l b=l
| NTT [Sampler |—© VANV |
I 2=

v s |=
} T—com | :
h 4 L 4 ~

I
} Rejection DDF-Based :/- ™\ u |
| | Sampler INTT1 _/ |
1 |

Figure 3.3: The compress function inside the KyBER.CPA.ENC

Algorithm 15 poly_compress

Input: poly[256]
Output: compressed_poly[128]
1: for i in 0 to 31 do

2 for j in 0 to 7 do

3 t[j] = COMPRESS,(poly[8i + j],4);

4 end for

5 compressed__polylk] = t[0] | t[1] << 4;

6 compressed_polylk + 1] = t[2] | t[3] << 4;
7 compressed__polylk + 2] = t[4] | t[5] << 4;
8: compressed__polylk + 3] = t[6] | t[7] << 4;
9: k =k +4;

10: end for

11: return compressed_ poly

3.4 NTT & Inverse NTT

The belief propagation-based attacks mentioned in 2.5.2 are targeting the
NTT/INTTs. There are already some published works on SCA countermea-
21

Chapter 3 | IMPLEMENTATION

Algorithm 16 poly_compress_shuffled

Input: poly[256]

Output: compressed_poly[128]
1: permutation[32] = FISHERYATES MODIFIED(32);
2: for z in 0 to 31 do
3: i = permutation[z];

4: for 7in 0 to 7 do

5: t[j] = COMPRESS,(poly[8i + j], 4);

6: end for

7 compressed__poly[k] = t[0] | t[1] << 4;

8: compressed__polylk + 1] = t[2] | t[3] << 4;
9: compressed__polylk + 2] = t[4] | t[5] << 4;
10: compressed__polylk + 3| = t[6] | t[7] << 4;
11: k =k +4;

12: end for

13: return compressed_ poly

sure on NTTs. In [23], Ravi et al. has implemented some shuffling counter-
measures on NTT/INTTs described in 2.4. We tried to use those implemen-
tation in our code. But noticed that their implementation is not constant
time, as a result it is not possible to do the t-test on the NTT/INTT parts
of our shuffled implementation of Kyber. So we are now trying to make the
implementation constant time so that we can include the shuffling on NTT
into our code.

22

Chapter 4

MEASUREMENT

In this section we present the performance and leakage evaluation of our
implementation. We have used the KYBER768 (parameter set mentioned in
table 2.1) implementation in the PQM4 [12] project as baseline and modified
the code to include the shuffling countermeasures mentioned in chapter 3.
And for the masked and shuffled implementation we have taken the masked
implementation of [10] of KYBER768 as baseline and modified the code to
include the same shuffling countermeasures.

4.1 Performance

We measured the performance of our shuffled implementation of Kyber768
in STM32F407VG microcontroller with 32-bit ARM Cortex-M4 with FPU
core that is mounted on the STM32F407VG Discovery board. The measure-
ment setup is based on the PQM4 [12] project. For the compilation we used
arm-none-eabi-gcc version 10.3.1 with compiler flags -03 -std=gnu99
-mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-di6.

In table 4.1, the comparison in the CPU cycles of different components
of the decapsulation of KYBER768 between plain implementation, shuffled
implementation and masked & shuffled implementation has been shown. Our
shuffled implementation and masked & shuffled implementation of decapsu-
lation of KYBER768 only has overhead factors 1.1x and 3.86x respectively,
over the plain implementation for CPU cycles. In the mkm4 project [10],
the CPU cycles for the decapsulation in KYBER7T68 were 2,978, 441 with the
similar set up and same microcontroller. So our shuffling implementation on

23

Chapter 4 | MEASUREMENT

Operation Cycles
Plain Shuffled Combined
Masked-Shuffled
crypto_kem_dec 797,645(1.0x) | 873,757(1.1x) | 3,081,293(3.86x)
indcpa_dec 43,902 80, 865 170, 361
indcpa_enc 612,132 650, 940 2,580,950
indcpa_dec 43,902 80, 865 170, 361
poly_tomsg 3,296 21, 826 84,782
poly_sub 765 19,199 21, 266
indcpa_enc 612,132 650, 940 2,580,950
poly_frommsg 1,716 19,710 147,530
poly_add 765 19,199 38,370
poly_compress | 2,889 0,127 347,430

Table 4.1: CPU cycles of different components of plain implementation,
shuffled implementation and combined masked-shuffied implementation of
KYBERT768

the masked KYBER768 has added almost 100,000 CPU cycles, which is a
1.03x overhead factor only.

4.2 Leakage Evaluation

The leakage evaluation of our Kyber768 implementation was done in STM32-
F415RG microcontroller. 'We have used a Tektronix DPO 70404C digital
oscilloscope to collect instantaneous power measurements during executions
of crypto_kem_dec. We have used the Test Vector Leakage Assessment
(TVLA) methodology introduced by Goodwill et al. [8] to check the im-
provement in security with our shuffling implementation. In our experiments
we have used fixed vs. random t-test as it is proposed in [25]. The fix class,
Qp, contains the power traces obtained when the algorithm’s input is a fixed
secret key sk, while random class, Q;, contains power traces obtained
when the input to the algorithm is a random secret key sk,qnq. In TVLA the
Welch’s t-test is used to detect the differences in the mean power consump-
tion between the two classes mentioned. The t-test statistic is computed

24

Chapter 4 | MEASUREMENT

as:

where jio (resp. u1) and o2 (resp. o2) stand for the sample mean and sample
variance of the set Qg (resp. Q) and ng and n; are the cardinality of the two
sets. A t-test gives a probability to examine the validity of the null hypothesis
as the samples in both sets were drawn from the same population, i.e., the
two sets are not distinguishable. The null hypothesis is rejected with 99.999%
confidence when the ¢ value is exceeded the £4.5 range for a large number
of measurements.

The TVLA experiment cannot be done on the whole crypto_kem_decaps
function since the decapsulation function is not constant time. Kyber uses
prime modulo Z,, where ¢ = 3329 which is a 12 bit prime number. Inside the
CPA-secure encryption algorithm of Kyber, as shown in line 1 of algorithm
2, the coefficientes of entries of the public matrix A is sampled from Z,. At
first 12-bit numbers are sampled from the XOF (Keccak) and then checked
if that number is less than ¢ or not. If yes it is accepted otherwise discarded.
As a result the implementation become non-constant time. But this does not
lead to any security risk since the matrix A inside Kyber algorithm is public
anyway.

For reasons mentioned above we have done component-wise TVLA exper-
iment. In our TVLA experiments on components of crypto_kem_decaps, we
divide between measurements with a fixed secret key, sky;; and measurements
with a random secret key, sk,qn,q. The null hypothesis in our experiment is
that the implementation does not leak the long term secret key, sk. The in-
put ciphertext to the crypto_kem_decaps function is kept as constant valid
ciphertext of a fixed message encrypted with the secret key sk ;.

4.2.1 poly_tomsg

In figure 4.1a, we can see in the t-test of the plain implementation of the
function poly_tomsg, after 10000 measurement the highest peak of the t-
statistic has crossed the value 100. On the other hand, in figure 4.1b, for the
shuffled implementation of the same function the value of the t-statistic has
not even crossed the value 10 after 10,000 measurement. It took almost 1000
measurements to cross the value 4.5 (shown in figure 4.2b) in our shuffled
implementation.

25

Chapter 4 | MEASUREMENT

(a) Plain

(b) Shufﬂed

Figure 4.1: T-statistic as a function of time after applying TVLA with a
pool of 10 000 measurements of the component poly_tomsg

(T M'M\\HHH\

A'H‘\Mm wuw"H‘””“uu il

” \I‘\M”m MHMU” HH\M”H HH“UH‘HH\“ \H‘HH\M H i

Max Absolute Peaks

i \M” \‘Mﬂ” ‘H‘M”“H‘
\:\3‘%‘\9\3u‘\c‘“c“u\“H\“\J\J\J\J\oM\;‘\M;‘H\MHHHCH"\MHHMW‘J‘E\HJH\J‘

(a) Plain

A Hlm
(b) Shuffled

Figure 4.2: Peak value of t-statistic after every 200 measurement of the
component poly_tomsg

1k A

T T T T t T T T T t T
o 5000 10000

T t T
15000

T t T T T T t T T T T t T
20000 25000 30000

Figure 4.3: t-test of poly_tomsg with 10 000 measurements after removing
the first message bit processing

But from figure 4.1b it is clear that the starting point of the graph is
contributing to the peak t-test value. If we remove the processing of first
message bit (figure 4.3) from the trace then it is taking almost 3000 mea-
surements to cross the value 4.5 (shown in figure 4.4). So it is clear that the
power trace of the first message bit processing is leaking more information
than the other bits. But since in case of shuffling the first bit processing is
randomized, the attacker cannot surely guess the first bit’s exact position

26

Chapter 4 | MEASUREMENT

Max Absolute Peaks

lm Hll“

TR "'”W il
W il V /H(“\/\ ;H\W

t T T T t T T T T
0 20 40 IDD

o - r %) IS
T T NS N
B
=T |
4 —
—
———

Figure 4.4: Peak value of t-test of poly_tomsg after every 200
measurements after removing the first message bit processing

in 32 bit message. Although template-attack like bit-flip technique can be
used to recover message, but altogether shuffling is actually increasing the
complexity of the attack with very little overhead in performance.

4.2.2 poly_sub

In figure 4.5a, after 10,000 measurements the peak t-statistic value for the
plain implementation of the function of poly_sub has almost touched the
value 100. Whereas in our shuffled implementation the peak value of the
t-test has not even crossed the value 10. Although the value 4.5 is crossed
but from the figure 4.5, it is clear that there is a improvement in the side
channel leakage after our shuffled implementation.

il WWWWWWm i

MWMWWWMMWWWWWMWMMM

(a) Plain (b) Shuffled

Figure 4.5: T-statistic as a function of time after applying TVLA with a
pool of 10 000 measurements of the component poly_sub

27

Chapter 4 | MEASUREMENT

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Hl'”\‘\\\\\m\'\\l\"\ ‘ um\\“H“'\'\‘\\‘\mm'\\
i ~ et AR
L A A T AR RN TR
AL e e e T VAR AR AR ANRRT

1

(a) Plain (b) Shuffled

Figure 4.6: Peak value of t-statistic after every 200 measurement of the
component poly_sub

4.2.3 poly_frommsg

In figure 4.7a, we can see that after 10,000 measurements the peak t-statistic
value for the plain implementation of the function of poly_frommsg has
crossed the value 100. Whereas in our shuffled implementation the peak
value of t-statistic after 10,000 has barely crossed the value 15. Since from
figure 4.7b, it can be seen that the end point of the graph is giving the peak
t-statistic values, we thought that the processing of the last message bit is
responsible for that. We checked the t-test once again after removing the
processing of the last bit of the message (shown in figure 4.9). In this t-test,
it took 2000 measurements to cross the range 4.5 (shown in figure 4.10).

‘J‘ iy u i

R il jiLdi

(a) Plain (b) Shuffled

Figure 4.7: T-statistic as a function of time after applying TVLA with a
pool of 10 000 measurements of the component poly_frommsg

4.2.4 poly_add

In figure 4.11a, after 10,000 measurements the peak t-statistic value for the
plain implementation of the function of poly_add has almost touched the
value 100. Whereas in our shuffled implementation the peak value of the
t-test has barely crossed the value 10. In 4.11b, it can be seen that the

28

Chapter 4 | MEASUREMENT

H“HM“'MM . |
L meuwMHHM‘\AH'H‘\“\\AH\“AHM”‘\‘\”\‘\\“H\H‘\\“\\“\ . aniil ‘MQ\M,‘M\”\\H\“\‘H\“\“‘\\”\\H\W\WM‘\‘\
ot I ‘H\HH””HH I H\‘W‘\HH””“H | MWWMW H’” \H‘\‘\ ‘ ’\ I
T wwm‘u‘ AU RIS I R ‘H\H‘“ iy \/H) \ HH\H UH\
A“,“‘ ‘H‘HHHH\‘\\H\“\‘HH\“\“H\‘”””‘\“\HHH‘H\”\‘\‘H‘H‘H\Hh‘HHH”MH‘ H‘UH\\‘ i /‘ i \H“\‘\ W\‘ \\‘ f\\\\’\m‘h Il ,V\MH‘\WH 1IN
LTI, il www wuww\ 1l wvv |||HHVH‘|| i
(a) Plain (b) Shuffled

Figure 4.8: Peak value of t-statistic after every 200 measurement of the
component poly frommsg

t t T t T T T T t T T T T t
0 5000 10000 15000 20000

Figure 4.9: t-test of poly_frommsg with 10 000 measurements after
removing the last message bit processing

Max Absolute Peaks

E * e
4j \/\/\/\/\/\/\/\/\/\/WW
EI) I ‘ ‘ ‘ 2:3 I I 6'0 I I ‘ I BIU I ‘ ‘ ‘ 1(')0

Figure 4.10: Peak value of t-test of poly_frommsg after every 200
measurements after removing the last message bit processing

two extreme point in the graph are contributing to the highest peak of the
t-statistic value. Those two are corresponding to the addition of the first
and the last coefficient of the two polynomials with 256 coefficients. We did

29

Chapter 4 | MEASUREMENT

e e A RN ALY

ALt Al B i

(a) Plain (b) Shuffled

Figure 4.11: T-statistic as a function of time after applying TVLA with a
pool of 10 000 measurements of the component poly_add

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

il
11 M Hh‘
M Wm M“u‘u“w\w H‘\“\‘\‘\”H\ WHHHH\ A\H\\‘\M ‘U”H”HH
f,,\.,~,,.¢»““,.""'

WH

vw’www ‘J‘J‘J‘“‘;“’v“‘v"v’\“‘v\‘”‘.‘\‘\‘“h JAEAEE

(a) Plain (b) Shuffled

il ””\

: »“V

Figure 4.12: Peak value of t-statistic after every 200 measurement of the
component poly_add

t T T T t T T T T t T T T T t
o 5000 10000 15000

Figure 4.13: t-test of poly_add with 10 000 measurements after removing
the first and last co-efficient addition

the t-test again by taking the trace of the additions corresponding to 253
coefficients (removing the addition of the two extreme coefficients from the
trace) and noticed that (in figure 4.13) the peak value of the t-statistic in
this t-test has not even crossed the value 6 with 10,000 measurements.

30

Chapter 4 | MEASUREMENT

n L .ll llIIIHl O]
M w | Il Hii
I

s
L

@
i

™

(R
Il J/ Il VHV 1l |

t T T T T t T T T T t T T T T t
0 20 40 60 80

o
L

Figure 4.14: Peak value of t-test of poly_add after every 200 measurements
after removing the first and last co-efficient addition

4.2.5 poly_compress

The t-test for the plain and shuffled version of the function poly_compress
is shown in figure 4.15. It is quite clear from the figure that shuffling is
not providing any benefit to the security of this function. Since we have
implemented shuffling on ¢ language only, this behavior of the t-test can
occur due to some optimization during compiling of the c-code in assembly
level.

(b) Shuffled

(a) Plain

Figure 4.15: T-statistic as a function of time after applying TVLA with a
pool of 10 000 measurements of the component poly_compress

31

Chapter 4 | MEASUREMENT

uuuuuuuuuuuuuuu

1| '\"WWW\ \“\ q | |
R
(a) Plain (b) Shuffled
Figure 4.16: Peak value of t-statistic after every 200 measuremen t of the

component poly_compress

32

Chapter 5

CONCLUSION

In this thesis, we have seen that only shuffling on post-quantum scheme Ky-
ber can give impressive improvement against side channel attack with very
little overhead in the run-time. Although in this paper we have implemented
shuffling countermeasure on KYBER768, but the same implementation tech-
niques can be easily extended to the other versions (KYBER512 and Ky-
BER768) also. We have already combined shuffling countermeasure together
with the mkm4 [10] project, which is the first order masked implementation
of Kyber768. We have presented the run-time of the combined implementa-
tion in section 4.1. But due to time constraint we are unable to run t-test
on the combined implementation.

In some of the components (e.g., poly_compress), shuffling has no visible
effect in the leakage evaluation. But since we have done all implementation in
¢ and the pqm4 project uses -03 optimization flag during compilation. So it
is possible that there is no effect of shuffling due to some optimizations during
compilation. In a future work these things can be observed thoroughly with
implementation in ARM assembly with increased efficiency in the run-time.

33

References

[1] Roberto Avanzi et al. CRYSTALS-Kyber Algorithm Specifications And
Supporting Documentation (version 3.02). 2021. URL: https://pq-
crystals.org/kyber/data/kyber-specification-round3-20210804.
pdf.

[2] Linus Backlund et al. Secret Key Recovery Attacks on Masked and
Shuffled Implementations of CRYSTALS-Kyber and Saber. Cryptology
ePrint Archive, Paper 2022/1692. https://eprint.iacr.org/2022/
1692. 2022. URL: https://eprint.iacr.org/2022/1692.

[3] Joppe Bos et al. CRYSTALS — Kyber: a CCA-secure module-lattice-
based KEM. Cryptology ePrint Archive, Paper 2017/634. https://
eprint . iacr.org/2017/634. 2017. pDOI: 10.1109/EuroSP. 2018.
00032. URL: https://eprint.iacr.org/2017/634.

[4] Joppe W. Bos et al. Masking Kyber: First- and Higher-Order Imple-
mentations. Cryptology ePrint Archive, Paper 2021/483. https://
eprint . iacr.org/2021/483. 2021. URL: https://eprint.iacr.
org/2021/483.

[5] Yajing Chang et al. “Template Attack of LWE/LWR-Based Schemes
with Cyclic Message Rotation”. In: Entropy 24.10 (2022). 1ssN: 1099-
4300. DOT: 10.3390/e24101489. URL: https://www.mdpi.com/1099-
4300/24/10/1489.

[6] Suresh Chari et al. “Towards Sound Approaches to Counteract Power-
Analysis Attacks”. In: Advances in Cryptology — CRYPTO’ 99. Ed. by
Michael Wiener. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 398-412. 1SBN: 978-3-540-48405-9.

34

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://eprint.iacr.org/2022/1692
https://eprint.iacr.org/2022/1692
https://eprint.iacr.org/2022/1692
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/634
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2021/483
https://eprint.iacr.org/2021/483
https://eprint.iacr.org/2021/483
https://eprint.iacr.org/2021/483
https://doi.org/10.3390/e24101489
https://www.mdpi.com/1099-4300/24/10/1489
https://www.mdpi.com/1099-4300/24/10/1489

Chapter 5 | References

[7]

[10]

[11]

[12]

[13]

[14]

[15]

W. Diffie and M. Hellman. “New Directions in Cryptography”. In: IEEE
Trans. Inf. Theor. 22.6 (Sept. 2006), pp. 644-654. 1SSN: 0018-9448. DOT:
10.1109/TIT.1976.1055638. URL: https://doi.org/10.1109/TIT.
1976.1055638.

Gilbert Goodwill et al. A testing methodology for side channel resis-
tance. 2011. URL: https://csrc.nist.gov/csrc/media/events/
non-invasive-attack-testing-workshop/documents/08_goodwill.
pdf.

Mike Hamburg et al. Chosen Ciphertext k-Trace Attacks on Masked
CCA2 Secure Kyber. Cryptology ePrint Archive, Paper 2021/956. https:
//eprint.iacr.org/2021/956. 2021. URL: https://eprint.iacr.
org/2021/956.

Daniel Heinz et al. First-Order Masked Kyber on ARM Cortex-M}.
Cryptology ePrint Archive, Paper 2022/058. https://eprint.iacr.
org/2022/058. 2022. URL: https://eprint.iacr.org/2022/058.

Dennis Hofheinz, Kathrin Hovelmanns, and Eike Kiltz. A Modular
Analysis of the Fujisaki-Okamoto Transformation. Cryptology ePrint
Archive, Paper 2017/604. https://eprint . iacr . org/2017/604.
2017. URL: https://eprint.iacr.org/2017/604.

Matthias J. Kannwischer et al. PQM/: Post-quantum crypto library for
the ARM Cortex-Mj4. https://github.com/mupq/pqmé.

Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd
Ed.): Seminumerical Algorithms. USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1997. 1SBN: 0201896842.

Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems”. In: Advances in Cryptology — CRYPTO
'96. Ed. by Neal Koblitz. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 1996, pp. 104-113. 1SBN: 978-3-540-68697-2.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power
Analysis”. In: Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology. CRYPTO ’99. Berlin, Heidel-
berg: Springer-Verlag, 1999, pp. 388-397. 1SBN: 3540663479.

35

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://eprint.iacr.org/2021/956
https://eprint.iacr.org/2021/956
https://eprint.iacr.org/2021/956
https://eprint.iacr.org/2021/956
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2017/604
https://eprint.iacr.org/2017/604
https://github.com/mupq/pqm4

Chapter 5 | References

[16] Julien Doget Matthieu Rivain Emmanuel Prouff. Higher-order Masking
and Shuffling for Software Implementations of Block Ciphers. Cryptol-
ogy ePrint Archive, Paper 2009/420. https://eprint . iacr . org/
2009/420.pdf. 2009. DOI: 10.46586/tosc.v2021.1i3.137-169. URL:
https://eprint.iacr.org/2009/420.pdf.

[17] Kalle Ngo, Elena Dubrova, and Thomas Johansson. Breaking Masked
and Shuffled CCA Secure Saber KEM by Power Analysis. Cryptology
ePrint Archive, Paper 2021/902. https://eprint.iacr.org/2021/
902. 2021. URL: https://eprint.iacr.org/2021/902.

[18] Kalle Ngo et al. A Side-Channel Attack on a Masked IND-CCA Secure
Saber KEM. Cryptology ePrint Archive, Paper 2021/079. https://
eprint . iacr.org/2021/079. 2021. URL: https://eprint . iacr.
org/2021/079.

[19] Tuy Tan Nguyen et al. “Area-Time Efficient Hardware Architecture
for CRYSTALS-Kyber”. In: Applied Sciences 12.11 (2022). 1SSN: 2076-
3417. DOI: 10.3390/app12115305. URL: https://www.mdpi . com/
2076-3417/12/11/5305.

[20] Peter Pessl and Robert Primas. More Practical Single-Trace Attacks
on the Number Theoretic Transform. Cryptology ePrint Archive, Paper
2019/795. https://eprint.iacr.org/2019/795. 2019. URL: https:
//eprint.iacr.org/2019/795.

[21] Post-Quantum Cryptography: Selected Algorithms 2022. https://csrc.
nist . gov/Projects / post - quantum - cryptography / selected -
algorithms-2022. Accessed: 2010-03-03.

[22] Robert Primas, Peter Pessl, and Stefan Mangard. Single-Trace Side-
Channel Attacks on Masked Lattice-Based Encryption. Cryptology ePrint
Archive, Paper 2017/594. https://eprint . iacr.org/2017/594.
2017. URL: https://eprint.iacr.org/2017/594.

(23] Prasanna Ravi et al. On Configurable SCA Countermeasures Against
Single Trace Attacks for the NTT - A Performance Evaluation Study
over Kyber and Dilithium on the ARM Cortex-Mj. Cryptology ePrint
Archive, Paper 2020/1038. https://eprint.iacr.org/2020/1038.
2020. URL: https://eprint.iacr.org/2020/1038.

36

https://eprint.iacr.org/2009/420.pdf
https://eprint.iacr.org/2009/420.pdf
https://doi.org/10.46586/tosc.v2021.i3.137-169
https://eprint.iacr.org/2009/420.pdf
https://eprint.iacr.org/2021/902
https://eprint.iacr.org/2021/902
https://eprint.iacr.org/2021/902
https://eprint.iacr.org/2021/079
https://eprint.iacr.org/2021/079
https://eprint.iacr.org/2021/079
https://eprint.iacr.org/2021/079
https://doi.org/10.3390/app12115305
https://www.mdpi.com/2076-3417/12/11/5305
https://www.mdpi.com/2076-3417/12/11/5305
https://eprint.iacr.org/2019/795
https://eprint.iacr.org/2019/795
https://eprint.iacr.org/2019/795
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2017/594
https://eprint.iacr.org/2017/594
https://eprint.iacr.org/2020/1038
https://eprint.iacr.org/2020/1038

Chapter 5 | References

[24]

[26]

[27]

28]

R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems”. In: Commun. ACM
21.2 (Feb. 1978), pp. 120-126. 1sSN: 0001-0782. por: 10.1145/359340.
359342. URL: https://doi.org/10.1145/359340.359342.

Tobias Schneider and Amir Moradi. Leakage Assessment Methodol-
0gy - a clear roadmap for side-channel evaluations. Cryptology ePrint
Archive, Paper 2015/207. https://eprint . iacr . org/2015/207.
2015. URL: https://eprint.iacr.org/2015/207.

Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer”. In: SIAM Journal
on Computing 26.5 (1997), pp. 1484-1509. URL: https://doi.org/
10.1137/S0097539795293172.

National Institute of Standard and Technology (NIST). Submission
Requirements and Evaluation Criteria for the Post-Quantum Cryptog-
raphy Standardization Processe. 2016. URL: https://csrc.nist.gov/
CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf.

Nicolas Veyrat-Charvillon et al. “Shuffling against Side-Channel At-
tacks: A Comprehensive Study with Cautionary Note”. In: ASTACRYPT.
Vol. 7658. Springer, 2012, pp. 740-757. por: 10.1007/978-3-642-
34961-4_44. URL: https://www.iacr.org/archive/asiacrypt2012/
76580728/76580728 . pdf.

37

https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://eprint.iacr.org/2015/207
https://eprint.iacr.org/2015/207
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://www.iacr.org/archive/asiacrypt2012/76580728/76580728.pdf
https://www.iacr.org/archive/asiacrypt2012/76580728/76580728.pdf

	Acknowledgements
	Declaration
	Abstract
	INTRODUCTION
	Motivation
	Our Contribution
	Thesis Outline

	PRELIMINARIES
	Kyber Key Encapsulation Mechanism
	Masking
	Shuffling
	Shuffling on NTT
	Some Attacks on Kyber

	IMPLEMENTATION
	Permutation Generation
	Kyber Decryption
	Kyber Re-encryption & Compare
	NTT & Inverse NTT

	MEASUREMENT
	Performance
	Leakage Evaluation

	CONCLUSION
	References

